
Building 
GitHub with 
Copilot

Bassem Dghaidi
Senior Software Engineer / GitHub

How our engineers multiply 
their impact and reliably 
ship features



The office



Agenda GitHub’s architecture (an overview)

GitHub’s SDLC[1] (how we ship changes)

Where AI fits into our SDLC

How I get the most out of Copilot

Q&A

[1] SDLC: Software Development Lifecycle

01

02

03

04

05

Agenda



01. GitHub’s 
architecture 
(a quick overview)



The Monolith
github/github

Inbound 
traffic

Outbound 
traffic

✨✨
✨
✨

✨



The high level map of GitHub
Block diagram of some of the the main services powering GitHub. 
* This is not an accurate representation of the integrations and traffic flows.



The high level map of GitHub
Block diagram of some of the the main services powering GitHub. 
* This is not an accurate representation of the integrations and traffic flows.



02. GitHub’s SDLC
(how we ship changes)



GitHub’s SDLC
(how we ship changes)



Pre-design 
phase
The problem space is not stack
ranked. Priorities vary.



Choice of EDR vs ADR depends
on the scale of the problem

Design 
phase



“Agile”
We don’t force a prescriptive
“agile” process. Teams choose
what’s best for them.



Ephemeral dev 
environments
● Always ready to ship.
● Everything goes behind 

feature flags.



We can run GitHub and all related services end to end in 1 chunky Codespace

Our inner loop supports cold starts!



Codespaces created per week
Within the GitHub organization



Codespaces started per week
Within the GitHub organization



Continuous 
Deployment
Shipping hundreds of changes 
per day via a multi-staged, 
multi-region pipeline.



Append the change to the merge queue

Press the big green 
button

��



Mirror deploys are tested every weekend, and 
yes, we can still deploy even if Slack is down.

Disaster recovery?

Oh no! GitHub is 
down…



Deployments across all services
Tuesday is a busy day for GitHub!



Gradual
rollouts
Feature flag driven rollouts, safe
can be rolled back and 
observable.



Feature flag state transitions
System behaviour changes across our landscape



Let’s review



03. Where AI fits 
into our SDLC



AI adoption
concentration
Where AI tools are used the most



AI adoption concentration
This should not be a surprise



How Hubbers use GitHub Copilot

Distribution of 
features usage by 
SWE and EMs at 
GitHub

Copilot Chat 
(Web Browser)

Code Completion

Agent Mode 
(IDE)



04. How I get the most 
out of Copilot



We’re going to focus on

AI usage patterns in this area



Breakdown complex codebases and rapidly 
build up missing context

Pattern #1

Codebase discovery



https://docs.google.com/file/d/1fWqHdlnYND97P0QF2k4Sf7wt-0lkZQfp/preview


Don’t underestimate the added value of 
the *.instructions.md files

Pattern #2

Copilot Instructions

http://copilot-instructions.md


Provide a complete description of the 
folder structure

Teach Copilot how to use your tools and 
run unit tests, linters, and generate mocks

Instruct Copilot which git operations to 
use and how to structure your commit 
messages



Cover this entire rectangle with the product shot / UI

Custom instructions in VS Code

Instructions can be language specific



I have 0 worry of an agent running loose

Pattern #3

Sandboxing with 
Codespaces



I shift my focus towards design and operations before combing through the output

Pattern #4

Copilot writes 90% 
of my code



Writing code != Software Engineering







AI assisted programming



Elaborate design documents are making a 
comeback

Pattern #5

1st pass is for VScode 
Agent mode



Implements from spec

A great first pass when 
the constraints are 
clear



There are other more important problems to 
solve

No more fighting with your dev env 

Copilot agent 
diagnoses & fixes dev 
dependencies



Especially in Go

Pattern #6

Great at writing unit 
tests, terrible at fixing 
existing tests



Specify the 
function names 
and reference 
relevant files

More context 
!= better 
outcomes

Agents today are accelerators not 
creators and most definitely not 
software engineers

Pattern #7

Breakdown the 
implementation 

in steps

Provide 
reference 

implementations

Prompt with intent

Example slide



Stop expecting magic 
work "with" the model



Preemptively anticipate how the agent is going to solve the problem

Don’t waste cycles on bad approaches



No need to guess performance impact

Pattern #8

Write different 
implementations & 
benchmark



https://docs.google.com/file/d/1MVaQiT1nTIP0fHKLovWZnkTusqTjjx-V/preview


Not as an alternative but as an additional tool

Pattern #9

Leverage the timeline 
then git



Best with Codespaces isolation

Pattern #10

Unleash the agent
aka YOLO mode



Don’t fight the tools, use 
them as leverage…



We want to 
hear from you!

Take the session survey by visiting the 
mobile app so we can continue to make 
your Universe experience cosmic!

Survey slide



Thank you

Thank you



Splash page


